
Perceptual Uncertainty

• What is it?
• How can the brain overcome uncertainty?
• Can instances of perceptual uncertainty help us 

understand something?
• What sorts of confusion occur when the brain simply cannot

overcome uncertainty?

But first… reminder of our overall approach to examining 
perceptual coding.

LESSON 6

Perceptual uncertainty, part 1
Perceptual uncertainty, part 2 (lesson 7)
Perceptual uncertainty, part 3 (lesson 8)



• Behistun Inscription, large rock relief 
on a cliff at Mount Behistun in the 
Kermanshah Province 

• Darius the Great (522–486 BC)

• inscription includes three versions of 
the same text, written in three 
different cuneiform script languages: 
Old Persian, Elamite, and Babylonian.

• arduous efforts to understand Old 
Persian paved the way to 
deciphering the Elamite and 
Babylonian

old Persian (known)

Elamite (unknown)

Babylonian (unknown)

deciphering perception by correlations
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Ø healthy, relaxed rat is a more intelligent rat



perceptual uncertainty

inability of the brain’s perceptual (subjective) readout to 
have exact knowledge about sensory events, even though 
the physical features or parameters of that event are, in 
some way encoded.

• incoming signal is somewhat ambiguous 
• divergence/convergence of sensory channels
• bias
• recent or distant history
• other causes
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• we live in a noisy and ambiguous world…  
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Yet somehow fingertip skin percepts include:
• surface microstructure (from rough to smooth)
• temperature (from warming to cooling)
• compliance (from soft to stiff)
• pointedness (from sharp to blunt)
• pressure (from light to strong)
• vibration frequency (from low to high)
• adhesiveness (from sticky to slippery)
• moistness (from dry to wet)
• much more (textures)

Whereas some of these dimensions can be mapped to 
receptor types (e.g., FNE expressing transient receptor 
potential (TRP) channels for thermal change), most of 
them cannot.

elementary channels

elementary percepts



How?

receptor channel convergence and divergence is a
brilliant mechanism for expanding the richness of the perceptual 
code, but it is not without some cost.



Using prior knowledge in a 
Bayesian manner can boost a 
percept but can also cause 
confusion.

The case of smooth & cool



Recall: perceptual uncertainty is the 
inability of the brain’s perceptual 
(subjective) readout to have exact 
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(2002)

1. A simple formulation for optimal 
convergence

2.   Discovery of near-optimality (linear 
summation) for vision-touch in humans



Nader Nikbakht
SISSA Neuroscience thesis prize

Nikbakht, N., et al.(2018). Supralinear and Supramodal Integration of Visual and Tactile 
Signals in Rats: Psychophysics and Neuronal Mechanisms. Neuron, 97(3), 626-639.

MIT
Cambridge, MA



where and how do modalities get combined? 



a real thing







Behavior Neurons
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after training at 0-90 degrees, 
first test session at new angles

performance, 0-90 degrees
performance, -45–0 degrees, 90-135 degrees
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response times correlate with task difficulty

B
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they do not “give up” on difficult trials, but try even harder



unimodal capacities vary among individual rats...
... but always better under VT than V or T.



peak psychometric curve slope as single measure for of performance
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information received through the senses is inherently probabilistic
§ subject is presented with a cue: !
§ he estimates some feature of that cue: !̂
§ !̂ is noisy and Gaussian-distributed: !̂~$ %, '(

§ reliability can be defined as the inverse of variance: )
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calculation of the brain is on !̂: comparison between !̂ and a 
“fixed” reference: "/"
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Bayesian approach
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a second approach to testing linearity



we treat V and T as two channels that provide the rat with streams of information 

• assumes that the 1information present within the sensory channels is converted 
directly into a choice.

• compute Shannon’s Mutual Information between stimulus category (horizontal or 
vertical) and behavioral choice in each modality separately, V and T. Thus, 100% 
behavioral accuracy implies 1.0 bits of sensory information, 50% (chance) 
accuracy implies 0 bits.

• then we compute the quantities predicted by the linear combination of V and T 
signals.

visual information

tactile information

visual information 
+

tactile information

1Adibi, Diamond, Arabzadeh (2012) PNAS
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How can performance achieve supralinearity?



Behavior Neurons









in 185 out of 622 neurons, trial-to-trial firing rate variations were best
accounted for by stimulus orientation.

stimulus 
sampling 

period



in 251 out of 622 neurons, trial-to-trial firing rate variations were best
accounted for by upcoming behavioral choice.

stimulus 
sampling 

period



neuronal responses are supramodal
average FR in 400 ms window preceding the response lick



… neuronal responses are supramodal across all angles



k spikes,
yet again!k spikes k spikes, again

tactile trialvisual trial visual tactile trial



are these neurons merely correlated with 
sensory inputs but not truly the basis for 

multimodal integration and decision making? 





How can 1 + 1 > 2?
How can synergy occur?

Two hypotheses come to mind:
• sensorimotor interaction
• intracortical interaction



count uncorrelated trains of visual and auditory pulses





Raposo et al.

count independent 
visual and auditory 
pulse trains

Nikbakht and Diamond

see and touch real thing

sensory tuning (code)? not really yes

modality synergy 
(supralinearity)? spotty robust

category (choice)? yes yes

modality specificy? yes no



While these findings speak to the question of augmenting the reliability of 
unimodal signals – a means for reducing uncertainty – they also speak to 
the question of how modality-independent knowledge is created.
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Behavioral performance



• modality convergence can reduced single-modality uncertainty

• modality invariance – a step in the abstraction of stimuli from sensory 
domains (’Robert Plant’)??

• not hardwired... emerges from interaction with real things

• besides supramodal knowledge, PPC circuitry also might shed light 
on the percept-to-action transformation.

reflections…


